Convex Approximations for a Class of Integer Recourse Models: A Uniform Error Bound

نویسندگان

  • W. Romeijnders
  • W. K. Klein Haneveld
چکیده

We discuss the performance of the convex approximations introduced by Van der Vlerk [2004] for the class of integer recourse problems with totally unimodular (TU) recourse matrices. We show that the main result in Van der Vlerk [2004] needs stronger assumptions, so that a performance guarantee for the convex approximations is lacking in general. In order to obtain such a performance guarantee, we first analyze the approximations for simple integer recourse models. Using a new approach we improve the existing error bound for these models by a factor 2. We use insights from this analysis to obtain an error bound for complete integer recourse problems with TU recourse matrices. This error bound ensures that the performance of the approximations is good as long as the total variations of the densities of all random variables are small.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Approximations for Totally Unimodular Integer Recourse Models: A Uniform Error Bound

We consider a class of convex approximations for totally unimodular (TU) integer recourse models and derive a uniform error bound by exploiting properties of the total variation of the probability density functions involved. For simple integer recourse models this error bound is tight and improves the existing one by a factor 2, whereas for TU integer recourse models this is the first nontrivia...

متن کامل

Convex approximations for simple integer recourse models by perturbing the underlying distributions

We present a class of convex approximations of the expected value function of a simple recourse problem with fixed technology matrix and integer second-stage variables. These approximations are obtained by perturbing the distributions of the right-hand side parameters. The resulting distributions are special instances of the class of distributions that yield convex expected value functions. A c...

متن کامل

Simple integer recourse models: convexity and convex approximations

We consider the objective function of a simple recourse problem with fixed technology matrix and integer second-stage variables. Separability due to the simple recourse structure allows to study a one-dimensional version instead. Based on an explicit formula for the objective function, we derive a complete description of the class of probability density functions such that the objective functio...

متن کامل

Convex approximations for complete integer recourse models

We consider convex approximations of the expected value function of a two-stage integer recourse problem. The convex approximations are obtained by perturbing the distribution of the random right-hand side vector. It is shown that the approximation is optimal for the class of problems with totally unimodular recourse matrices. For problems not in this class, the result is a convex lower bound t...

متن کامل

Assessing the quality of convex approximations using sampling

We consider two types of convex approximations of two-stage totally unimodular integer recourse models. Although worst-case error bounds are available for these approximations, their actual performance has not yet been investigated, mainly because this requires solving the original recourse model. In this chapter we assess the quality of the approximating solutions using Monte Carlo sampling, o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012